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Abstract—To disseminate messages from a single source to a large number of targeted receivers, a natural approach is the
tree-based application layer multicast (ALM). In time-constrained flash dissemination scenarios, e.g. earthquake early warning,
where time is of the essence, the reliable extensions of the tree-based ALM using ack-based failure recovery protocols cannot
support reliable dissemination in the timeframe needed. In this paper, we propose FaReCast which exploits path diversity, i.e., exploit
the use of multiple data paths, to achieve fast and reliable data dissemination. First, we design a forest-based M2M (Multiple
parents-To-Multiple children) ALM structure where every node has multiple children and multiple parents. The intuition is to
enable lower dissemination latency through multiple children, while enabling higher reliability through multiple parents. In order
to maintain the M2M ALM structure in a scalable and reliable manner, we develop a DHT-based Distributed Configuration
Manager. Second, we design multidirectional multicasting algorithms that effectively utilize the multiple data paths in the M2M ALM
structure. A key aspect of our reliable dissemination mechanism is that nodes, in addition to communicating the data to children,
also selectively disseminate the data to parents and siblings. As compared to trees using traditional multicasting algorithm,
we observe an 80 percent improvement in reliability under 20 percent of failed nodes with no significant increase in latency for
over 99 percent of the nodes. Moreover, we notice that FaReCast can reduce the network overhead more than 50 percent by tuning
the M2M structure, as compared to the other reliable ALM based disseminations.

Index Terms—Overlay network, flash dissemination, fault resilience, multicast
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1 INTRODUCTION

O UR work is motivated by the need for highly reliable
data dissemination that delivers critical information to

hundreds of thousands of receivers within a very short
period of time. An example is the flash dissemination of
disaster (natural or man-made) warning messages that
must be rapidly delivered to urban populations in a matter
of a few seconds to enable citizens to take self-protective
measures (e.g., duck-cover-hold on for earthquakes, shelter
underground for tornadoes). The key challenge lies in
delivering messages scalably (reaching large populations),
reliably (despite network outages and message losses) and
efficiently (low operational cost during non-disaster times
with quick ramp-up when needed). Given the rarity of
these events, it is unlikely that a dedicated infrastructure,
such as communication connections between peoples and
the source of the messages, that is operational and available
24/7 will be deployed. Our objective, therefore, is to
leverage any and all available infrastructure and exploit
knowledge of network connectivity to ensure that interest-
ed recipients are able to actually receive the messages
within a very short period of time.

In this paper, we develop an ALM-based solution for the
flash dissemination problem above using a peer-oriented
architecture where the peer nodes are formed by those
interested in receiving the messages. We argue that the
problem lends itself well to a peer-based architecture; an
ALM-based solution is attractive due to its potential for easy
deployment (no changes to lower layer network protocols at
the participating nodes) [4] and its ability to deal with a
variety of recipients. Challenges arise since 1) end-devices are
autonomous and hence unreliable; 2) end-devices are nodes
that are executing other tasks and must typically be rapidly
repurposed to deal with the rare warning messages when it
occurs. Our ALM-based solution must deliver the messages
reliably and in time, while handling the node churn as well as
minimizing the maintenance overhead.

We view the ALM approach as consisting of two key
aspectsV1) the ALM structure and 2) the multicasting
algorithm deployed on the structure. Participating nodes in
the ALM structure organize themselves into an overlay
topology (typically a tree or mesh) for data deliveryVeach
edge in this topology corresponds to a unicast path
between two nodes in the underlying Internet. Once the
ALM structure is constructed, data from the source node is
delivered to all multicast recipients using the implemented
multicasting algorithm. Note that all multicast-related
functionality is implemented at the nodes (instead of at
routers as in network-layer multicast).

Our target scenario consists of a single source and
several receivers; A tree-based ALM structure (where
every node has a single parent and multiple children)
seems appropriate for fast data dissemination [4], [5], [18],
[8]. A tree-based structure exploits concurrency in that all
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nodes that have received data can communicate with their
children concurrently. As the fan-out, i.e. the number of
children per node, of the tree increases, the data delivery
time decreases logarithmically with the number of fan-out
as the base. Unfortunately, the tree structure is highly
vulnerable to failures since every intermediate node in a
tree structure is a point of failure [16], [17], [25], [29] that
can block delivery of the message to the entire subtree
under it. In fact, this problem is further aggravated as the
fan-out of a tree structure increases, since the number of
nodes impacted by a failure increases exponentially.

Typical reliable multicast approaches detect such fail-
ures during operation and recover from them (usually by
reconstructing parts of the tree). Protocols have been
designed to recover the tree structure by substituting the
failed node with an existing online node [4], [5], [6], [7],
[22], [30], [29]Vthis requires tree reconstruction which is a
time-consuming operation; techniques have also been
proposed to use backup information to reduce recovery
time to some extent [18], [23], [24], [25], [26], [27], [28].
Many of these approaches rely on TCP retransmission to
detect and retransmit lost packets and support reliability at
the communication layer. In our flash dissemination
scenario, i.e., dissemination of disaster warning messages,
delivery time are highly constrained; existing approaches
to detect and recover from failures or employ per-packet
acknowledgements require interactions and handshakes
with other nodes, which makes it difficult to respond
within the required time constraints.

In this paper, we present FaReCast, an ALM protocol
for fast and reliable data dissemination that exploits the
use of multiple data paths between nodes judiciously by
1) designing a new ALM structure and 2) developing a new
multicasting algorithm that efficiently exploits the proposed
structure. Specifically, we design a forest-based M2M
(Multiple parents-to-Multiple children) ALM structure where
each participant node has multiple parents as well as multiple
children. Care is taken in the construction of the M2M
structure to support path diversity (through the choice of
unique parent node sets); this supports increased reliability by
minimizing the probability that nodes with failed common
parents lose data. To complement the M2M ALM structure,
we design a multidirectional multicasting algorithm that
effectively utilizes the multiple data paths in the M2M ALM
structure. In addition to top-down communication character-
istic of traditional multicasting, the multidirectional multi-
casting algorithm deploys bottom-up data flow and
horizontal data flow carefully. Since there is prior knowledge
of the M2M structure at each node, nodes can trigger
communication and send data to parents from which it has
failed to receive the expected data. Additionally, in the case
of leaf nodes, FaReCast forwards data to the other leaf
nodes which it anticipates may have not received the data. A
key design issue for FaReCast is addressing the tradeoff
between two conflicting factorsVhigher fan-out (increased
speed) vs. higher fan-in (increased reliability).

While our primary goals are scalability, speed and
reliability, our secondary goal is to reduce maintenance
overhead during normal times when there is no event. In
FaReCast, we minimize the client-side maintenance over-
head by storing the snapshots of current network status at the

configuration manager. Each individual user retrieves accu-
rate parent/children information from the configuration
manager periodically. The configuration manager detects
node failure based on this periodic update request and
updates the snapshot asynchronously. Through both simula-
tion and implementation-based evaluations, we show that
FaReCast tolerates over 40 percent random failures while
meeting the latency constraints, i.e. FaReCast can endure high
user churn as well as a certain level of snapshot inconsistency.

The rest of the paper is organized as follows. The related
works are presented in Section 2. In Section 3, we describe the
design and management of the M2M ALM structure having
multiple fan-in and fan-out. Section 4 discusses the distribut-
ed configuration manager in order to enhance the scalability
and the reliability of the management of M2M structure.
The multidirectional multicasting algorithm achieving high
reliability with small data latency is described in Section 5.
In Section 6, we analyze the reliability and the overhead of
FaReCast with a simple model. We evaluate the proposed
FaReCast system in Section 7 with extensive simulations and
implementation on a campus cluster platform and an
emulated wide area network. Finally, we present concluding
remarks in Section 8.

2 RELATED WORKS

Typical ALM applications include file sharing and content
streaming; specialized protocols have been designed for
these applications [5], [6], [7], [9], [10], [11], [12]. Our prior
work on flash dissemination focused on fast dissemination of
medium to large sized data. We leveraged a dynamic mesh-
based overlay network constructed using a random walker
protocol, CREW [13] to concurrently disseminate multiple
chunks of a large message. Also, to enable low dissemination
overhead despite catastrophic failure, we extended the
random walker implementation (the Roulette protocol); it
was used to implement a P2P webserver Flashback [14] to
deal with flash crowds. However, the cost of metadata
propagation and overlay maintenance in CREW/Roulette is
unwarranted in the current scenario where 1) the end
recipients are known and 2) the message size is small.

Multiple fan-in ALM structures are considered in other
approaches such as [9], [11], [15], [16], [17], [20], [21]. All
increase the number of data paths to a target node to stream
large data concurrently and efficiently. Here, the large data is
divided into smaller data chunks that are disseminated
through the multiple paths concurrently. The chunking
techniques are combined with loss tolerant decoding/
encoding [9], e.g., erasure coding [19] to ensure that all
recipient nodes get the entire large data correctly. Such
expensive coding schemes are unnecessary in our scenario
where the information delivered to target nodes is small
(order of a few bytes/Kbytes). FaReCast exploits path
redundancy to send the same data through multiple paths,
and the duplicated messages are used to initiate the proposed
multidirectional multicasting which utilizes the multiple
data path more effectively.

A possible extension to meet the time constraint is
randomized forwarding proposed in PRM (Probabilistic
Resilient Multicast) [28]. By using small amount of redundant
messages, PRM improves the reliability of dissemination on a
tree structure. However, in the case of the flash dissemination,
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its enhancement can be limited under very high failures
such as 20-30 percent. In FaReCast, the combination of M2M
structure and the multidirectional multicasting supports
100 percent reliability while meeting the latency constraint
under very high failures such as 30-40 percent.

3 FOREST-BASED M2M ALM STRUCTURE

In this section, we present our forest-based M2M ALM
structure. The system primarily consists of 1) target nodes
interested in receiving the dissemination, 2) an originating
server where the dissemination is initiated, and 3) a
configuration manager that maintains and manages the
structure and connectivity information (discussed later).
We will construct an overlay structure consisting of the
originating server and target nodes and effectively use that
structure to address our dual needs of reliability and
timeliness in information dissemination. To maintain sepa-
ration of concerns, we distinguish two clear-cut steps in
enabling reliable, fast ALM: 1) construction of an overlay
structure that enables concurrency and reliability 2) use of the
constructed overlay in a multicast protocol that efficiently
implements concurrency (aka speed) and reliability tradeoffs
in the dissemination process under dynamic conditions.

The process begins with the construction of the forest-
based M2M overlay structure which consists of the originating
server (or a well-established representative) as the root-
node and target nodes (interested recipients) that form the
sub-tree rooted at the originating server. The goal is to
organize the target nodes into levels and establish overlay
connections between them to enable concurrency and
reliability for dissemination. The overall design philosophy
is as follows: to support fast dissemination, every node in the
structure will have multiple children from which concurrent
content dissemination can occur. To handle reliability, every
node in the structure will have multiple (redundant) parents
that it receives content from. Determining the arities and
connections of nodes in the M2M (Multiple parents to
Multiple children) overlay structure to maximize speed and
reliability while minimizing redundant transmissions is the
key challenge. Prior to establishing the properties of the M2M
structure, we provide some definitions and assumptions that
will be used in creating the M2M structure.

Level of a node ðLÞ: The level of a node is the length of
the path, expressed as number of hops, from the root to this
node. The level of the root node is assumed to be 0, children
of the root node are at level 1 etc.

Sibling Nodes: Nodes having same level are referred to
as sibling nodes. Sibling nodes at a level belong to a level-
group. NL is the number of sibling nodes at level L.

Fan-in ðFiÞ: The fan-in of a node is the number of parents
of a node. All participating nodes (except those at levels 0
and 1) have Fi parents.

Fan-out factor ðFoÞ: The fan-out factor is the ratio ofNLþ1

toNL, and is a measure of the minimum number of nodes at
a level, i.e., NL � FoÞL.

The configuration manager is a dedicated component
managed by organizations such as local authorities which
are interested in reliable overlay network as a fast
message dissemination medium. It enables the management

of the M2M structure by performing the following tasks:
1) management of information on nodes, level-groups and
sibling nodes in a level-group; 2) construction and mainte-
nance of the overlay structure, 3) answering of queries about
the M2M structureVfor example, it responds to update
requests from target nodes with information on their current
parents/children. The update requests also serve as periodic
heartbeat messages to the configuration manager indicating
that a node is alive; in FaReCast, we keep the frequency of
such update requests very low (�1 hour). Communications
between the configuration manager, target nodes and the
originating server occur via a pre-established API.

3.1 Properties of the M2M ALM Structure

. Root-node reliability: The root node (at level 0) is
expected to be continuously available.

. Fan-in constraint: Each participating node should
have Fi distinct parents just one level above. If the
level of a node is L, all the parents are picked from the
same level, L� 1. The only exceptions are nodes at
level 1 that have only one parent since the level-group
for level 0 has only one node, the root node.

. Loop-free nature: We assume loop-free transmission
when data flows from parent nodes to child nodes. In
particular, we assume that the assignment of levels in
the M2M ALM structure is done in such a way that all
paths from the root to a node have the same length.
Assuming that the latency of message transmission
over any two links is not significantly different [3], the
M2M ALM structure can guarantee that data reaching
a node from different parents arrive close to each other
in time. That is, in the M2M ALM structure with Fi
parents, each node should get Fi data items within a
short period of time under the failure-free situation.
This property is later exploited (and selectively
relaxed) by the multidirectional multicasting protocol
to improve reliability and make up for missing
messages from failed parents.

. Parent set uniqueness: All nodes in the M2M ALM
structure (with level � 2) have a unique set of parents.
That is, there is at least one different parent in the
parent-sets of two nodes at the same level. Without
this property, concurrent failures of nodes at a level
can potentially block out messages to the level below;
parent-set uniqueness enforces path diversity in
the propagation of the message and consequently
improves the chances of reliable delivery.

Achieving the parent-set uniqueness property brings
out an interesting relationship between fan-in and fan-out
factor. The following equation should be satisfied to
guarantee parent-set uniqueness:

NLþ1 � CðNL; FiÞ where Fi 9 1; L 9 0: (1)

And, to satisfy Equation (1), NL is determined by the
following equation:

NL ¼ðFoÞL þ Fo þ Fi � 2

where Fo 9 1; Fi 9 1; L 9 0: (2)
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The detail description of achieving parent uniqueness is
found in Section 1.1 of the supplement file which is
available in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/280.

3.2 Node Operations and Structure Maintenance
Given an initial root node (possibly the originating server),
the creation of an M2M ALM structure that is compliant
with the properties described above proceeds as a series of
node joins. Subsequent evolution of the structure consists
of a series of node join/leave requests coordinated by the
configuration manager. Interspersed with node joins and
node leaves, the configuration manager detects node failures
(i.e. an unstructured node leave) and reorganizes the M2M
ALM structure to recover from the failure. FaReCast employs
periodic update request messages from participant nodes to the
configuration manager to communicate that a participant
node is still alive. The configuration manager responds to
a node’s update request with the current parents/children
of the node. As discussed earlier, the frequency of update
messages is kept low to prevent bottlenecks at the configu-
ration manager and reduce structure maintenance cost. The
details of each operation are described below.

3.2.1 Node Join
When a new node, Nnew, joins the system, it is first given
a new nodeID. The node sends a join request to the
configuration manager in order to determine 1) its level and
2) its parent/children nodes. In accordance with Equation (2),
the configuration manager determines current information
about each level group and selects the lowest level requiring
more nodes as the level of the new node in the M2M ALM
structure. Parent selection for the node proceeds as follows.
If the selected level is Lþ 1, the configuration manager
randomly picks Fi different nodes among the level L nodes
as the parents of the new node.

The configuration manager next determines whether the
selected parent set satisfies the parent set uniqueness property
at level L. The configuration manager maintains a parents
pool structure managed by each level-groupVthat contains
entries of the form {child, parent-set}. If the newly selected
parent-set is not unique, we choose to replace one of the
nodes (the one with the maximum number of children) in
the current parent set with another distinct randomly

selected node at the same level (excluding the most recent
selection). This uniqueness checking operation is repeated
until a unique set of parents is found. If the configuration
manager follows the constraint of Equation (2), every new
node can find a unique set of parents.

The uniqueness checking operation can be projected to a
collision problem with the birthday paradox problem. At
level L, there are given NLþ1 random parent sets drawn
from a discrete uniform distribution within the set CðNL;FiÞ
and we can consider the probability pðNLþ1;CðNL;FiÞÞ that
at least two parent sets are the same. Through Taylor series
expansion of the exponential function, we can approxi-
mately obtain the following equation: pðNLþ1;CðNL;FiÞÞ ¼
1� e�NLþ1ðNLþ1�1Þ=2CðNL;FiÞ. According to the equation, when
the level L is small such as 2 or 3 pðNLþ1;CðNL;FiÞÞ is higher
than 0.91, but pðNLþ1;CðNL;FiÞÞ decreases exponentially as
the level L increases. For example, then the level L is 10, the
probability of collision drops below 0.0014. That is, when the
level L of a new node is big enough, the uniqueness checking
operation does not incur high time cost.

However, when the level L of a node is small, the
probability of collision becomes very high and the worst
case time complexity such OðNLþ1Þ can be expected with
high probability. Here, Oð1Þ means the single uniqueness
checking operation including the selection of a random parent
set and the test of collision. According to this, an alternative
way of the uniqueness checking operation for the new nodes
at lower level is required. The alternative way is using a
predefined logical parent pool which is generated by the
configuration manager in a deterministic way which follows
Equation (2). The predefined logical parent pool describes the
parent-child relationship between logical nodes in advance.
Whenever a new node joins the system, the node is mapped
into a logical node in the predefined logical parent pool and
obtains the information of its parents and children. Fig. 1
depicts the predefined logical parent pool and illustrates the
alternative way of the uniqueness checking operation for a
new node. The usage of the predefined logical parent pool
allowsOð1Þ complexity of the uniqueness checking operation.

After finding a unique set of parents, the configuration
manager registers the new node with the new nodeID and
its selected parent-set in the corresponding parent pool,
and each parent of the new parent-set registers the new
node as a child using its nodeID. The configuration
manager then responds to the join request with the nodeID,
the level, and parents/children information.

3.2.2 Node Leave
When a node leaves the M2M ALM structure, it notifies the
configuration manager to coalesce the hole caused by it in
the ALM structure. All the impacted nodesVparents-sets
that include the leaving node, children of the leaving node
and parents of the leaving node should be invalidated and
updated. Also the number of nodes in the level-group of
the leaving node reduces by one. The key idea is to quickly
find a replacement node for the leaving node with minimum
maintenance overhead including communication and
processing cost. To do this, we invalidate the registered
node information of the leaving node. The invalidated
node information is retained at the configuration manager
for a while (this is captured by a retainment-timer) with the

Fig. 1. Predefined logical parent pool and the uniqueness checking
operation for a new node. Fi ¼ 2 and Fo ¼ 2.
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expectation that a new node will join quickly and it can
simply replace the invalidated node. If this happens, the
configuration manager validates all the impacted nodes to
accommodate the newly arrived node.

If there are not enough new nodes to cover the invalidated
nodes, the configuration manager must repair these holes
with other existing nodes. A retainment-timer is associated
with each invalidated node; when the retainment-timer of
an invalidated node expires without any replacement, the
configuration manager picks a random leaf node to replace
the invalidated node and subsequently invalidates the leaf
node information. The configuration manager does not notify
the updated information to all the impacted nodes right away,
but responds with it to their periodic requests for the recent
structure information (update message).

3.2.3 Node Failures
Failed nodes are those that leave the M2M ALM structure
without any notification. The configuration manager detects
the failed nodes by an update-timer. Each participant node
sends a periodic update request in order to refresh the
parents/children information. Once a node joins the system
and its information is registered, the configuration manager
sets the update-timer of the node and resets the timer
whenever it receives an update request from the node. If the
update-timer of a node is expired, the node information
is invalidated, and the repair of the M2M ALM structure
proceeds similar to the case of a leaving node. The nodes in the
lower level-groups use shorter update-timers than the nodes
in the higher level-groups, because lower level nodes are
critical to preserving the reliability of the M2M structure.

3.2.4 Maintenance Overhead and Reliability
In our target scenario, an interesting event occurs rarely
and participating nodes join/leave the system far more
frequently than the event. It is therefore imperative that
the management overhead (e.g., network bandwidth,
processing power) incurred by the M2M ALM structure
is low, especially during non-event times. In order to
reduce the maintenance overheads of the participating
nodes, we implement a cooperative solution in which the
configuration manager and nodes participate. Firstly, we
effectively and efficiently use the configuration manager to
maintain the M2M ALM structure and required meta-data;
participating nodes send update requests to the configuration
manager for current structure information. At the node
end, we increase the length of timers (retainment-timer and
update-timer) to keep neighborhood information updated.
There is an obvious tradeoff between the overhead and
reliability since delaying timers implies that the M2M ALM
structure from the view of participant nodes is not as
updated as desired. In Section 5, we propose an effective
multidirectional multicasting protocol (when the event
occurs) that can tolerate stale information in the M2M ALM
structureVallowing us to achieve low maintenance overhead
with high reliability.

4 DISTRIBUTED CONFIGURATION MANAGER

The configuration manager plays an important role in the
construction of the M2M ALM structure by managing the

information about FaReCast nodes and communicating
with them. While a centralized configuration manger is
simple to implement, it presents significant scalability
and reliability issues, especially when the number of
users scale. This is true even if the frequency of update
requests is kept very low; handling a large number of
user requests in a centralized manner can incur substan-
tial overhead. Moreover, a centralized manager is a single
point of failure in generating and maintaining the M2M
structure. To alleviate scalability and reliability concerns
that arise from a centralized configuration manager, we
design a DHT-based distributed configuration manager.
The distributed configuration manager is composed of
multiple machines provided by the related organization
such as local authorities. DHT is used as a substrate for
the distributed configuration manager primarily because
it provides self-organizing properties making distributed
manager more reliable. It also inherently disperses
maintenance requests (join/update) across the nodes
and partitions the associated information storage load
across the multiple machines.

Every machine in the distributed configuration manager
is associated with a machineID obtained by using the
SHA-1 hash of the concatenated string of its IP address
and port number. Each end user also has a nodeID
generated using the similar hashing technique with any
unique string of an end user (IP address or MAC address).
Given machineIDs and nodeIDs, each machine is respon-
sible for the information of nodes whose nodeIDs are
numerically close to its machineID [31], [32]. That is, when
a node joins, leaves or requests an update message, the
request is forwarded to the machine corresponding to its
nodeID. Each machine store the information of the
responsible nodes and replicate it in order to provide
tolerance to unexpected failures of some machines in the
distributed configuration manager. The other issues
related to the distributed storage such as replication and
load balancing may be considered, but these issues can be
resolved by using the techniques proposed in previous
researches [31], [32]. The information associated with a
node includes the nodeID, level, invalidation status,
parents, children, leaf-links, IP address, port, and timers
(update-timer/retainment-timer). Since the machinedIDs
and nodeIDs are distributed uniformly on the ID space,
the overhead for storing the information of nodes can be
distributed to multiple machines uniformly. That is, if the
number of nodes is N and the number of machines in the
distributed configuration manager is M, the storage
overhead is OðN=MÞ.

When a new node joins the system, it sends a join
request to any one of the machines in the distributed
configuration manager. The join request is forwarded to
the machine corresponding to the nodeID of the new node.
If there is any invalidated node in the local machine, it
accommodates the new node with the invalidated instance.
Otherwise, it follows the general join process; selecting its
level and parents.

A machine in the distributed configuration manager
cannot get the exact global status of each level of ALM
structure without an expensive synchronization service,
but can estimate the global status by using the local status
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of each level and the number of participating machines of
distributed configuration manager ðMÞ. Since each ma-
chine manages around 1=M of the entire set of nodes, each
machine also manages a potion of size 1=M of the nodes at
each level. If the number of nodes managed by a machine
for the level L is Nlocal

L , the machine can estimate the global
number of nodes for the level L by multiplying Nlocal

L and
M. If MNlocal

L G NL, where NL is from Equation (2), the
machine assigns the level L to the new node. Otherwise
if MNlocal

L 9 ¼ NL, the machine assigns the level Lþ 1 to
the new node and repeats this until the level Lþ 1 is fully
assigned.

After a new node obtains its level, it selects candidates of
its parents by sending request to other machines, uniformly
at random. Rather than using the centralized parent pool,
the parent set uniqueness is tested by checking the
existence of any shared child among the candidates of
parents. If there is no shared child among the candidates
of parents, it guarantees that the candidate set is a unique
parent set.

The information of invalid nodes is managed by each
local machine with retainment-timers. If a retainment timer
is expired before accommodating any new node, the
corresponding invalid node should be replaced with
another valid node in the local machine.

Since all of the components for handling requests are
distributed, the distributed configuration manager solves
bottlenecks that occur with the centralized configuration
manager when the number of nodes is large. However, it
takes additional internal messages to handover a request to
other machines. Let us assume that there are M machines
and each machine manages 1=M of the entire nodes. If we
assume that the target nodeID of a join/leave requet is
uniformly distributed on the ID space, a machine may
forward ð1� 1=MÞ of requests to other machines. General-
ly, the routing overhead of a DHT-based system increases
logarithmically with the size of participant entities, and it
can be represented as OðlogMÞ. That is, the additional
internal messages in the distributed configuration manager
is Oðð1� 1=MÞ logMÞ. However, the additional internal
messages are also distributed in M machines. That is, the
cost of additional internal messages for forwarding requests
of other machines is Oððð1� 1=MÞ logMÞ=MÞ.

To evaluate the scalability of the proposed distrib-
uted configuration manager, we implemented a DHT
(FreePastry [2])-based distributed configuration manager

and ran it on ModelNet [1] setting which is used for
evaluating the implementation of FaReCast. We varied the
number of machines from 1 to 100. The case of only one
machine represents the centralized configuration manager.
In the default settings for FaReCast, we used Fo ¼ 3, and
Fi ¼ 2 or 3. We assume that there are 10 K end users and
they join the system arbitrarily. With this setting, around
10 minutes is used for every node to join the system and
around 60 ms is used for handling a single message.

Fig. 2 shows the performance of the distributed
configuration manager. The centralized configuration
manager does not generate internal messages, but incurs
the complete overheads of data storage and user request
handling. As shown in Fig. 2a, the DHT based distributed
configuration manager generates the internal messages
which increases logarithmically with the number of
machines. This is because a distributed configuration
manager with more machines requires more forwarding
steps to locate a machine which can handle a random
request. Also, we noticed that Fi impacts the amount of
generated internal messages. That is, as Fi increases, each
machine initiates more requests in order to obtain parents.
As the number of machines increases, the impact of Fi to
the internal messages becomes substantial.

However, as shown in Fig. 2b, the overall overhead of a
node decreases inversely proportional to the number of
machines both in terms of the message overhead (number
of messages) and storage overhead (number of instances of
node information). As expected, we observed that the
storage overhead decreases with the number of machines.
Since the size of an instance of a node information is up to
4 KB, if there are 100 machines it spends only 400 KB rather
than 40 MB which is for a centralized configuration
manager. In the case of the message overhead, we
measured every message between the configuration man-
ager and end usersVthis includes Join request/response
messages and Update request/response messages for new
parents and children. We also considered the additional
internal messages such as messages used for uniqueness
checking operations. Despite the fact that multiple ma-
chines incur additional internal messages, we observed
that the individual overhead of a machine decreases
significantly along with the number of machines. Accord-
ing to this, we expect that the more machines are used, the
more users can be handled by the distributed configuration
manager gracefully.

Fig. 2. Performance for the DHT-based distributed configuration manager. FreePastry Setting: Size of LeafSet ¼ 4, BaseBitLength ¼ 2. (a) Internal
messages. (b) Average overhead of a machine.
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5 MULTIDIRECTIONAL MULTICASTING

In this section, we describe our proposed multidirectional
multicasting algorithms. The key idea here is to enable
reliable message delivery despite failures with limited
increase in latency and messaging overhead. We do this by
pushing the multicast message along directions where
failures are estimated to have occurred. Recall that when
a node in the M2M ALM structure receives a message (the
first one) from one parent, it is expected that messages from
all the other parents will arrive shortly (due to equal path
length and similar delay assumption). When messages do
not arrive from parents, we conservatively assume possible
failures in the direction of those parentsVand enhance the
multicasting algorithm to send additional messages in
these directions. We propose a protocol that encompasses
two forms of multidirectional multicastVBackup and Leaf-
to-Leaf (L2L) dissemination.

5.1 Backup Dissemination
In our M2M ALM structure, although a node has multiple
parents, the message remains undelivered to the node if all
parents of a node have failed. Note that if this node is an
intermediate node, its children can still receive the message
from the other parents and paths. In other words, the
message may bypass this node even though the node is
operationalVwe refer to such nodes as bypassed nodes. Once
a node is bypassed, its children lose one data path and the
probability of message loss increases. For example, in
Fig. 3, node G is a bypassed node and its child, node M does
not get the message. One objective of our multicasting
protocol design is to reduce the degradation of the
reliability caused by the bypassed nodes.

Traditional multicasting protocols propagate messages
unidirectionally along the tree from parents to children and
cannot address the bypassing problem. If however, bottom-
up propagation is permitted, i.e., messages from children
to parents, the bypassed nodes can receive a message from

one of its children who have received the message from
alternate parents. Since this creates possibly redundant
messagesVcareful determination of potential bypassed
parent nodes by children is essential.

The detection of bypassed nodes exploits the constant-
path-length property maintained by the M2M ALM
structure. According to this property, when a node receives
the first message from one of its parents, it expects that
other Fi � 1 parents will send the same message within a
short period of time, Tw. When a node fails to receive a
message within Tw from a parent, the node assumes that the
parent node has been bypassed or has failedVand
forwards the message to this parentVwe refer to this
selective bottom-up dissemination as backup dissemination.

5.2 Leaf-To-Leaf Dissemination
While backup dissemination handles missing messages to
bypassed intermediate nodes, it cannot be applied to a leaf
node whose parents have all failedVwe refer to such a leaf
node as a missing leaf node. Given the M2M ALM structure
(larger number of nodes at higher levels of the tree), a
significant number (almost half) of the participating nodes
are leaf nodes. Techniques to ensure that messages get to
leaf nodes on time are critical to the reliable dissemination
process.

We introduce the notion of leaf-links to address the
problem of missing leaf-nodes. Here, each leaf node
maintains a leaf link pool, i.e., a set of links to leaf nodes
sharing the same parents, i.e., leaf-links. When a leaf node
gets the first message from a parent, the following actions
are performed. First, leaf links sharing that parent are
masked in the leaf link pool since it is assumed that
the other leaf nodes can also receive the message from the
shared parent. Second, as in backup dissemination, the
node waits for a stipulated period of time Tw, to receive
messages from all the other parents. After the waiting time
passes, the leaf node sends the message to the other leaf
nodes corresponding to the unmasked leaf links. In Fig. 3,
node M getting the first message from node G recognizes
that node I is bypassed or failed, and sends the message to
node N which shares node I as a parent. The direction of
this dissemination is horizontal (leaf node to leaf node) and
we refer to it as L2L (leaf-to-leaf) dissemination.

Unlike backup dissemination, we argue that having
different waiting times for starting the L2L dissemination
will help reduce redundant messages. Since every path
from the root to leaf nodes at the same level has the same
hop-length, transitively every message originated at the
root reaches all sibling nodes within the same bounded
time period Tw, assuming no failure. If all sibling leaf-nodes
use the same duration of time to wait for the other
messages, they start the L2L dissemination at the similar
time, resulting in huge redundant messages.

To alleviate these redundant L2L disseminations, we
employ differential waiting periods at leaf-nodes, similar
to exponential backoff strategies. Leaf nodes that wait for
longer periods now receive messages from recovered
bypassed parents (due to backup dissemination) and
from other leaf nodes (due to L2L dissemination). This
causes related leaf links to be masked and redundant
messages are avoided. To achieve random waiting time,

Fig. 3. Example mutidirectional multicast.
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each leaf node generates a random integer n in the range
½1; N � and the waiting time is set to n � TW , where Tw is the
waiting time for the backup dissemination. As N increases,
the variance of random waiting time increases and we
more redundant messages are avoided. We set N as 4 in the
evaluation.

6 ANALYSIS OF RELIABILITY AND OVERHEAD

We analyze FaReCast with a simple model in two
aspectsVreliability and overhead under a flash dissemi-
nation scenario. We assume that each node has a unique set
of parents and parents of a level L node are located at level
L� 1. We denote fan-in and fan-out factor as Fi and Fo,
respectively. For simplicity, we assume that the probability
of failure of every node is same as Pf .

At first, we consider the case of a traditional top-down
multicasting. In this case, a node will not receive a message
if all of its parents fail. That is, the probability that a
node will not get a message can be represented as
Pbypass ¼ ðPfÞFi .

However, since there is no time for repairing the failures
of M2M structure in the flash dissemination scenario,
PL
bypass of a node at level L should consider not only the

probability of failures of its parents at level L� 1, but also
the probability that parents will not get a message.
Accordingly PL

bypass of FaReCast only with a traditional
top-down multicasting can be represented as Equation (3).
Equation (3) also represents the probability that a node will
not get a message in the case of multiple tree or mesh
structure with the traditional multicasting. In this case, the
overhead message of a level L node can be represented as
OL ¼ Fi � 1

PL
bypass ¼ ðPfÞ

Fi þ
XFi
i¼1

Fi
i

� �
ðPfÞFi�ið1� PfÞi PL�1

bypass

� �i
: (3)

According to Equation (3), we note that PL
bypass increases

as L increases. It is the main reason that most of nodes
which fail to receive a message in FaReCast (also in
multiple tree structures) only with the traditional top-
down multicasting belong to leaf nodes. The property that
PL
bypass increases along with L also affects the reliability of

random mesh structure using epidemic dissemination. The
diameter of the random mesh structure increases logarith-
mically with the number of participant nodes, and it is
relatively longer than that of FaReCast or a multiple tree
structure. Because of the long diameter, random mesh
requires very high fan-in ðFiÞ to achieve high reliability
(100 percent).

The probability that a node will not get a message,
PL
bypass, impacts the reliability of the multicasting system. In

order to achieve high reliability, PL
bypass should be low. The

simplest way is increasing Fi and it is the only way for the
traditional top-down multicasting in any structures. How-
ever, in FaReCast using the proposed multidirectional
multicasting, the intermediate nodes using the backup
dissemination and the leaf nodes using the leaf-to-leaf
dissemination exhibit different PL

bypass and OL.
When using the backup dissemination, a level L node

can expect additional messages from its children at level

Lþ 1. That is, PL
bypass of an intermediate node using the

backup dissemination should consider the case that all
children miss a message, and it is represented as the
following equation with some level of approximation. In
this case, the additional messages from children are
produced only if the children detect bypassed parents.
Accordingly, the expected overhead of an intermediate
node is OL ¼ ðFi � 1Þ þ PL

bypassð1� PLþ1
bypassÞFo

PL
bypass ¼ ðPfÞ

FiþFo

þ
XFiþFo
i¼1

Fi þ Fo
i

� �
ðPfÞFiþFo�ið1� PfÞi PL�1

bypass

� �i
: (4)

When using the leaf-to-leaf dissemination, a level L leaf
node may receive messages from its sibling nodes which
sharing the same parents. In our M2M ALM structure, the
number of nodes in level L is around ðFoÞðLÞ, and each
node chooses Fi parent nodes among the ðFoÞðL� 1Þ nodes
in level L� 1. According to this, an intermediate node at
level L� 1 has averagely FoFi children. That is a leaf node
has FoFi � 1 leaf-links for each parent. For simplicity we
assume that leaf-links are distinct to each other. In this case,
PL
bypass of a leaf node using the leaf-to-leaf dissemination

should consider the case that all sibling miss a message,
and it is represented as the following equation, where
Fl ¼ ðFiFo � 1ÞFi:

PL
bypass ¼ ðPfÞ

FiþFl

þ
XFiþFl
i¼1

Fi þ Fl
i

� �
ðPfÞFiþFl�ið1� PfÞi PL�1

bypass

� �i
: (5)

As same to the case of the backup dissemination, the
leaf-to-leaf dissemination is triggered only if a child node
detects bypassed parents. So, the expected overhead of a
leaf node using the leaf-to-leaf dissemination is repre-
sented as OL ¼ ðFi � 1Þ þ PL

bypassð1� PL
bypassÞFoFi � 1Fi.

Fig. 4 shows the theoretical comparison of P 15
bypss along

with different failure rate. In Fig. 4a, we observed that
backup dissemination significantly improve the reliability
and FaReCast achieves 100$ reliability. Moreover, in
Fig. 4b, it is observed that as one of both Fi and Fo
increases the reliability increases.

We note that when more failures are expected, more
additional messages are generated to compensate the loss
of the reliability in FaReCast. That is, FaReCast keeps high
reliability by using additional messages incurred adap-
tively to the degree of failures. Moreover, unlike the
general thought which is that the big Fo hampers high
reliability under high probability of failures, we observed
that the big Fo helps keep high reliability in FaReCast since
the conditionally generated additional messages depends
on Fi as well as Fo.

7 EVALUATION AND IMPLEMENTATION

To gain a better understanding of how FaReCast works under
massive failures, we evaluated FaReCast along multiple
dimensions, primarily in comparison to tree-based multi-
cast, mesh-based multicast and flooding based (epidemic)
protocols. These dimensions include: 1) Reliability (the ratio
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of unfailed nodes that finally receive the message); 2) Latency
(the delay of message delivery to unfailed nodes that are
able to receive the message); and 3) Efficiency/Overhead
(number of duplicated/redundant messages and its impact
on system overhead). The detail simulation settings are
found in Section 1.2 of the supplement file available online.

7.1 Effectiveness of FaReCast under Failure
In Fig. 5, we compare FaReCast with other protocols,
specifically, Tree, forest/mesh based dissemination such as
SplitStream [9], MultipleTree [20], [21] and PRM [28], and
flooding-based approaches such as Epidemic [11], [13], to
disseminate an urgent message. Fig. 5a compares the
reliability of the various protocols as a function of the
fraction of failed nodes. To compare these protocols in a
fair manner, we set the number of fan-in and fan-out as
3 and 3 for all protocols, respectively, except Tree which
has only one fan-in. We set the number of neighbors in
Epidemic to 6, since neighbors can be parents or children.
For the PRM we set the number of neighbors to 20.
Reliability is measured as the number of nodes receiving
the message over the number of online nodes. As expected,
the Tree protocol is affected adversely by the failure.
Protocols having multiple parents can tolerate up to
15 percent failures reasonably well. When the number of
failures exceed 15 percent, FaReCast continues to achieve
100 percent reliability, while others including M2M (uses
only the M2M structure which does not employ the
multidirectional multicasting) lose substantial reliability.

Fig. 5b plots the maximum latency as a function of the
fraction of failed nodes. The Tree, Epidemic, PRM and
M2M protocols appear to have lower maximum
latenciesVa closer look reveals that this comes at the cost

of reliability (many nodes do not receive the message at
all). SplitStream and MultipleTree lose reliability and
exhibit increased latencies as the number of failures
increase. The key reason is that the distance between the
root and a node increases under failure in SplitStream and
MultipleTree. M2M has a slightly reduced latency since its
loop-free nature holds under failures. We observe that the
maximum latency of FaReCast also increases along with
failures. A deeper analysis indicates that this increase is
caused by the waiting time to trigger the multidirectional
multicasting. However, we observe that FaReCast delivers
the message to around 99 percent of the total nodes with
small latencies; higher latencies are incurred by a few
bypassed nodes reached by backup/L2L dissemination.
Epidemic exhibits good average latency behavior since the
number of nodes reached in each dissemination step (in the
early stage) is twice that of other protocols. We also observe
that the average latency behavior of PRM is comparable to
the Epidemic since PRM employs hybrid approach of tree
and mesh structure.

Fig. 5c shows the message overhead as a function of the
fraction of failed nodes. We define the message overhead as
the average number of messages sent by an online node. In
Tree, the message overhead decreases because most of
nodes cannot get the message under failures. M2M,
SplitStream, and MultipleTree have almost same overhead
(around 3); Epidemic sends twice as many messages
(around 6). The overhead of PRM is around 5 which is
similar to Epidemic. Note that many of these protocols lose
substantial reliability in spite of the high message over-
head. In FaReCast, the message overhead increases along
with failures. This is the unique feature of FaReCast, while
other protocols usually use the same amount of message

Fig. 5. Performance comparison of FaReCasts (Fi ¼ 3, Fo ¼ 3) with other protocols under various failures with 100,000 nodes. (SS:SplitStream,
MT:MultipleTree, EP:Epidemic, PRM:PRM). (a) Reliability. (b) Maximum latency. (c) Message overhead.

Fig. 4. Theoretical comparison of Pbypass at level 15. (a) Various methods. (b) Various Fi and Fo.
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which depends on the initial setting. That is, FaReCast
selectively use overlay links by detecting failures and
triggering multidirectional multicasting. Notice that under
30 percent failure the message overhead of FaReCast is
similar to Multiple Tree, but under 30 percent failure the
message overhead of FaReCast is similar to Epidemic;
however, FaReCast achieves 100 percent reliability, as
compared to 90 percent reliability of the Epidemic protocol
under 30 percent failure. For better understanding of the
dynamic message overhead of FaReCast, the Section 1.4.3
of supplement file available online show the comparision
between PRM and FaReCast in the aspects of message
overhead and reliability.

7.2 Tuning FaReCast with Fan-in and
Fan-out Factor

To understand the effect of adjustment of fan-in and fan-
out factor, we compare FaReCast with other protocols
under various settings of fan-in and fan-out factor in terms
of reliability, message overhead (total number of sent
messages) and maximum latency. Table 1 shows this
comparison with 100,000 nodes and 30 percent failure. In
this table, the results of SplitStream is omitted because it is
very similar to that of MultipleTree. For Epidemic, fan-out
factor is not considered, but the number of neighbors is
two times more than fan-in value for other protocols. In
Table 1, for all of protocols, as fan-in increases, message
overhead as well as reliability increases. Also, bigger fan-
in reduces maximum latency. That is, the effect of fan-in is
similar to all of protocols. But, the effect of fan-out factor
to FaReCast is different to the other protocols. The only
common effect of fan-out factor to all of protocols is that
bigger fan-out factor reduces maximum latency. For other

protocols including MultipleTree and SplitStream, as fan-
out factor increases, reliability slightly decreases and there
is no change of message overhead. That is, with bigger
fan-out factor, a node failure impacts more children, but
there is no way to complement the failure, and reliability
decreases. On the other hand, for FaReCast, as fan-out
factor increases, message overhead increases and reliabil-
ity also increases. According to this, to achieve 100 percent
reliability, other protocols requires very big fan-in such as
over 7, but FaReCast can use small fan-in with big fan-out
factor such as the setting of 2 fan-in and 6 fan-out factor.

We also observed that FaReCast can achieve same level
of reliability with fewer messages. In Table 1, the message
overhead of FaReCast is almost half of that of MultipleTree
(also SplitStream) and almost quarter of that of Epidemic.
Unlike other protocols, which send the data through all
designated links (children or neighbors), FaReCast selec-
tively sends the data to the subset of all possible links
(children, parents, and leafs) which suppose to be affected
by node failures. But, with fewer messages FaReCast
exhibits longer maximum latency. To reduce maximum
latency, FaReCast can increase fan-in or fan-out factor.
Note that, in FaReCast, a large fan-in just wastes messages,
on the other hand a large fan-out factor is more effective in
reducing dissemination latency.

7.3 Effect of Random Timer of L2L Dissemination
As discussed in Section 5.2, L2L dissemination suffers from
the problem that multiple leaf nodes may send messages to
the same nodes simultaneously. To diminish the effect of
this conflict, we can use the random waiting time to the L2L
dissemination by multiplying a random integer to Tw.
Fig. 6b plots the message overhead for different policies

TABLE 1
Comparison of FaReCast with Other Protocols under Different Settings of Fan-in and Fan-out Factor. The Target Number of Nodes

Is 100,000 and the Percentage of Failure Is 30 Percent

Fig. 6. Performance comparison between various waiting policies for L2L dissemination. (a) Maximum Latency. (b) Message Overhead.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142580



that obtain random waiting times differently. Each policy
uses a different range of the random integers multiplied to
Tw. B1, B2, B3, and B4 policy uses 1, 2, 3, and 4 as N , which
is the maximum value the random integer can have. So,
policy B1 causes all nodes wait for Tw and with policy B4,
25 percent of the nodes each wait for Tw, 2 � Tw, 3 � Tw, and
4 � Tw, respectively. As we expected, B1 achieves the
biggest message overhead and the lowest maximum
latency. At the other end, B4 achieves the lowest message
overhead and the highest maximum latency. However,
the difference in maximum latency is not that big. Even
though large N for the random timer helps reducing the
message overhead, this improvement saturatesVIn
Fig. 6b, B2 can save about 25 percent of the message
overhead than B1, but B4 can only save about 10 percent
of the message overhead than B3.

7.4 Effect of Tw
Fig. 7 shows the latency and the overhead as a function
of Tw in FaReCast with 30 percent of failures. We vary
the average RTT between any two nodes from 100 ms to
300 ms. As Tw increases, the maximum latency increases
linearly. But, the overhead decreases exponentially as Tw
increases. The main reason is that the longer Tw delays the
triggering point of multidirectional multicasting. On the
other hand, the delayed multidirectional multicasting
reduces redundant messages. We note that if Tw is bigger
than the average RTT, the overhead does not decrease
significantly but the latency still increases linearly. Accord-
ing to this, it is good to set Tw to the average RTT.

7.5 Implementation of FaReCast
We implemented the FaReCast protocol in a middleware
suite and evaluated it on a campus cluster testbed with
nodes connected through a wide-area Internet emulator
(ModelNet) [1]. The detail descriptions of the setting of
ModelNet and the implementation of FaReCast system is
found in Section 1.3 of the supplement file available online.

8 CONCLUSION

We proposed FaReCast, a Fast and Reliable data dissem-
ination system for flash dissemination scenarios such as
earthquake early warning where the target network is large
and potentially unreliable. FaReCast constructs a M2M
ALM structure where each node has multiple children
guaranteeing the fast delivery of the message as well as
multiple parents ensuring the reliability of the delivery.

The FaReCast M2M ALM structure is accompanied by
a multidirectional multicasting algorithm which sends
data not only to the children but also to the selected
parents or the selected siblings. Unlike ack-based commu-
nication, the multidirectional multicasting algorithms
proactively figure out the direction of failures and target
message resends along the direction. As compared to trees
using a traditional multicasting algorithm, we observe an
80 percent improvement in reliability under 20 percent
failed nodes with no significant increase in latency for over
99 percent of nodes. Under extreme failures, e.g. more than
30 percent failed nodes, we observe that existing mesh-
based protocols exhibit low reliability, FaReCast achieves
100 percent reliability with a small increase in latency and
overhead.
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